Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472821

RESUMO

Freshly harvested Tremella fuciformis contains high water content with an unprotected outer surface and exhibits high respiration rates, which renders it prone to moisture and nutrient loss, leading to decay during storage. Our research utilized ε-poly-L-lysine (ε-PL) and chitosan as a composite coating preservative on fresh T. fuciformis. The findings revealed that the ε-PL + chitosan composite coating preservative effectively delayed the development of diseases and reduced weight loss during storage compared to the control group. Furthermore, this treatment significantly decreased the respiration rate of T. fuciformis and the activity of respiratory metabolism-related enzymes, such as alternative oxidase (AOX), cytochrome c oxidase (CCO), succinic dehydrogenase (SDH), 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase (6-PGDH and G-6-PDH). Additionally, the composite coating preservative also delayed the depletion of ATP and ADP and maintained higher levels of the energy charge while preserving low levels of AMP. It also sustained heightened activities of Mg2+-ATPase, Ca2+-ATPase, and H+-ATPase enzymes. These results demonstrate that utilizing the ε-PL + chitosan composite coating preservative can serve as a sufficiently safe and efficient method for prolonging the shelf life of post-harvest fresh T. fuciformis.

2.
Front Immunol ; 15: 1295693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312840

RESUMO

PSME3 plays a significant role in tumor progression. However, the prognostic value of PSME3 in pan-cancer and its involvement in tumor immunity remain unclear. We conducted a comprehensive study utilizing extensive RNA sequencing data from the TCGA (The Cancer Genome Atlas) and GTEx (Genotype-Tissue Expression) databases. Our research revealed abnormal expression levels of PSME3 in various cancer types and unveiled a correlation between high PSME3 expression and adverse clinical outcomes, especially in cancers like liver cancer (LIHC) and lung adenocarcinoma (LUAD). Functional enrichment analysis highlighted multiple biological functions of PSME3, including its involvement in protein degradation, immune responses, and stem cell regulation. Moreover, PSME3 showed associations with immune infiltration and immune cells in the tumor microenvironment, indicating its potential role in shaping the cancer immune landscape. The study also unveiled connections between PSME3 and immune checkpoint expression, with experimental validation demonstrating that PSME3 positively regulates CD276. This suggests that PSME3 could be a potential therapeutic target in immunotherapy. Additionally, we predicted sensitive drugs targeting PSME3. Finally, we confirmed in both single-factor Cox and multiple-factor Cox regression analyses that PSME3 is an independent prognostic factor. We also conducted preliminary validations of the impact of PSME3 on cell proliferation and wound healing in liver cancer. In summary, our study reveals the multifaceted role of PSME3 in cancer biology, immune regulation, and clinical outcomes, providing crucial insights for personalized cancer treatment strategies and the development of immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Antígenos B7 , Proliferação de Células , Bases de Dados Factuais , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
3.
Neuroscience ; 538: 1-10, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37913862

RESUMO

With the deepening of population aging, the treatment of cognitive impairment and dementia is facing increasing challenges. Vascular dementia (VaD) is a cognitive dysfunction caused by brain blood flow damage and one of the most common causes of dementia after Alzheimer's disease. White matter damage in patients with chronic ischemic dementia often occurs before cognitive impairment, and its pathological changes include leukoaraiosis, myelin destruction and oligodendrocyte death. The pathophysiology of vascular dementia is complex, involving a variety of neuronal and vascular lesions. The current proposed mechanisms include calcium overload, oxidative stress, nitrative stress and inflammatory damage, which can lead to hypoxia-ischemia and demyelination. Oligodendrocytes are the only myelinating cells in the central nervous system and closely associated with VaD. In this review article, we intend to further discuss the role of oligodendrocytes in white matter and myelin injury in VaD and the development of anti-myelin injury target drugs.


Assuntos
Doença de Alzheimer , Demência Vascular , Substância Branca , Humanos , Demência Vascular/patologia , Substância Branca/patologia , Oligodendroglia/patologia , Doença de Alzheimer/patologia , Bainha de Mielina/patologia
4.
J Environ Sci (China) ; 138: 236-248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135392

RESUMO

Methane is the second largest anthropogenic greenhouse gas, and changes in atmospheric methane concentrations can reflect the dynamic balance between its emissions and sinks. Therefore, the monitoring of CH4 concentration changes and the assessment of underlying driving factors can provide scientific basis for the government's policy making and evaluation. China is the world's largest emitter of anthropogenic methane. However, due to the lack of ground-based observation sites, little work has been done on the spatial-temporal variations for the past decades and influencing factors in China, especially for areas with high anthropogenic emissions as Central and Eastern China. Here to quantify atmospheric CH4 enhancements trends and its driving factors in Central and Eastern China, we combined the most up-to-date TROPOMI satellite-based column CH4 (xCH4) concentration from 2018 to 2022, anthropogenic and natural emissions, and a random forest-based machine learning approach, to simulate atmospheric xCH4 enhancements from 2001 to 2018. The results showed that (1) the random forest model was able to accurately establish the relationship between emission sources and xCH4 enhancement with a correlation coefficient (R²) of 0.89 and a root mean-square error (RMSE) of 11.98 ppb; (2)The xCH4 enhancement only increased from 48.21±2.02 ppb to 49.79±1.87 ppb from the year of 2001 to 2018, with a relative change of 3.27%±0.13%; (3) The simulation results showed that the energy activities and waste treatment were the main contributors to the increase in xCH4 enhancement, contributing 68.00% and 31.21%, respectively, and the decrease of animal ruminants contributed -6.70% of its enhancement trend.


Assuntos
Metano , Animais , Metano/análise , China
5.
Plants (Basel) ; 12(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38068697

RESUMO

Nitrogen (N), phosphorus (P), and potassium (K) are three macronutrients that are crucial in plant growth and development. Deficiency or excess of any or all directly decreases crop yield and quality. There is increasing awareness of the importance of rhizosphere microorganisms in plant growth, nutrient transportation, and nutrient uptake. Little is known about the influence of N, P, and K as nutrients for the optimal production of Chrysanthemum morifolium. In this study, a field experiment was performed to investigate the effects of N, P, and K on the growth, nutrient use efficiency, microbial diversity, and composition of C. morifolium. Significant relationships were evident between N application rates, C. morifolium nutrient use, and plant growth. The N distribution in plant locations decreased in the order of leaf > stem > root; the distributions were closely related to rates of N application. Total P fluctuated slightly during growth. No significant differences were found between total P in the roots, stems, and leaves of C. morifolium vegetative organs. Principle component analysis revealed that combinations of N, P, and K influenced soil nutrient properties through their indirect impact on operational taxonomic units, Shannon index, and abundance of predominant bacterial taxa. Treatment with N, P, and K (600, 120, and 80 mg·plant-1, respectively) significantly improved plant growth and quality and contributed to the bacterial richness and diversity more than other concentrations of N, P, and K. At the flowering time, the plant height, leaf fresh weight, root dry weight, stem and leaf dry weight were increased 10.6%, 19.0%, 40.4%, 27% and 34.0%, respectively, when compared to the CK. The optimal concentrations of N, P, and K had a positive indirect influence on the available soil nutrient content and efficiency of nutrient use by plants by increasing the abundance of Proteobacteria, decreasing the abundance of Actinobacteria, and enhancing the potential functions of nitrogen metabolism pathways. N, P, and K fertilization concentrations of 600, 120, and 80 mg·plant-1 were optimal for C. morifolium cultivation, which could change environmental niches and drive the evolution of the soil microbial community and diversity. Shifts in the composition of soil microbes and functional metabolism pathways, such as ABC transporters, nitrogen metabolism, porphyrin, and the metabolism of chlorophyll II, glyoxylate, and dicarboxylate, greatly affected soil nutrient cycling, with potential feedback on C. morifolium nutrient use efficiency and growth. These results provide new insights into the efficient cultivation and management of C. morifolium.

6.
Appl Opt ; 62(35): 9361-9367, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38108708

RESUMO

Pupil size is an important parameter since it governs the magnitude of ocular aberrations. The pupil size of a human eye has significant individual differences and varies with light level and accommodation. In order to accurately measure ocular aberrations under different pupil sizes using a Shack-Hartmann wavefront sensor (SHWFS), two types of relationship matrices R (1) and R (2) were proposed, which corresponded to wavefront reconstruction with and without an aperture stop, respectively. The numerical and experimental results indicated that matrix R (2) can significantly improve the accuracy of wavefront restoration when the incident beam size is inconsistent with the wavefront reconstruction aperture. Meanwhile, the impact of the aperture stop on the reconstruction accuracy will become smaller and smaller as the ratio ρ of the outer area to the detection aperture decreases. This study not only can be used for accurately measuring ocular aberrations under different pupil sizes, but also for other variable aperture aberrations measurement in other applications.

7.
Hortic Res ; 10(7): uhad101, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577400

RESUMO

Chrysanthemum Fusarium wilt is a soil-borne disease that causes serious economic losses to the chrysanthemum industry. However, the molecular mechanism underlying the response of chrysanthemum WRKY to Fusarium oxysporum infection remains largely unknown. In this study, we isolated CmWRKY6-1 from chrysanthemum 'Jinba' and identified it as a transcriptional repressor localized in the nucleus via subcellular localization and transcriptional activation assays. We found that CmWRKY6-1 negatively regulated resistance to F. oxysporum and affected reactive oxygen species (ROS) and salicylic acid (SA) pathways using transgenic experiments and transcriptomic analysis. Moreover, CmWRKY6-1 bound to the W-box element on the CmWRKY15-like promoter and inhibited its expression. Additionally, we observed that CmWRKY15-like silencing in chrysanthemum reduced its resistance to F. oxysporum via transgenic experiments. In conclusion, we revealed the mechanism underlying the CmWRKY6-1-CmWRKY15-like cascade response to F. oxysporum infection in chrysanthemum and demonstrated that CmWRKY6-1 and CmWRKY15-like regulates the immune system.

8.
Biology (Basel) ; 12(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508417

RESUMO

The endophytic microbiomes significantly differed across tea chrysanthemum cultivars and organs (stems and leaves). The most abundant endophytic bacterial genera were Pseudomonas, Masillia, and Enterobacter in the leaves and Sphingomonas and Curtobacterium in the stems of the five cultivars. Meanwhile, the most abundant endophytic fungal genera in the leaves and stems of the five tea chrysanthemums were Alternaria, Cladosporium, and Sporobolomyces. Specifically, Rhodotorula was dominant in the leaves of 'Jinsi huangjv' and Paraphoma was dominant in the stems of 'Jinsi huangjv'. In all cultivars, the diversity and richness of endophytic bacteria were higher in leaves than in stems (p < 0.05). The highest diversity and richness of endophytic bacteria were recorded in 'Chujv', followed by 'Jinsi huangjv', 'Fubai jv', 'Nannong jinjv', and 'Hangbai jv'. Meanwhile, endophytic fungi were less pronounced. Twenty-seven and 15 cultivable endophytic bacteria and fungi were isolated, four isolated endophytic bacteria, namely, CJY1 (Bacillus oryzaecorticis), CY2 (Pseudomonas psychrotolerans), JSJ7, and JSJ17 (Enterobacter cloacae) showed higher indole acetic acid production ability. Further field studies indicated that inoculation of these four endophytic bacteria not only promoted plant growth and yield but also increased total flavonoids, chlorogenic acid, luteolin, and 3,5-dicoffeylquinic acid levels in the dry flowers of tea chrysanthemums.

9.
Front Oncol ; 13: 1187495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333808

RESUMO

Background: Acquired cystic disease-associated renal cell carcinoma (ACD-RCC) is a new subtype listed by the 2016 World Health Organization (WHO) classification, which occurred in end-stage renal disease (ESRD) patients. This study will present the imaging characteristics of the four cases diagnosed with ACD-RCC. Ultrasound is expected to help detect abnormalities early in the follow-up of patients on regular dialysis, allowing patients to receive early treatment. Case presentation: We searched the pathology database of our hospital for all inpatients diagnosed with ACD-RCC between January 2016 and May 2022. Pathology, ultrasound, and radiology readings are performed by experienced physicians with the title of attending physician or higher. Four cases were included in this study, all of whom were male, aged from 17 to 59. Two cases suffered from ACD-RCC in both kidneys, and kidney nephrectomies were performed. One case underwent renal transplantation, whose creatinine was back to normal, and the rest were on hemodialysis. On the pathological images, heteromorphic cells and oxalate crystals can be seen. Both ultrasound and enhanced CT showed an enhancement of the solid component of the occupancy. We followed up with outpatient and telephone visits. Conclusion: In clinical work, ACD-RCC should be considered when the mass appears in the background of multiple cysts in the kidney in patients with ESRD. A timely diagnosis will help with treatment and prognosis.

10.
BMC Plant Biol ; 23(1): 312, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37308810

RESUMO

BACKGROUND: Chrysanthemum Fusarium wilt is a common fungal disease caused by Fusarium oxysporum, which causes continuous cropping obstacles and huge losses to the chrysanthemum industry. The defense mechanism of chrysanthemum against F. oxysporum remains unclear, especially during the early stages of the disease. Therefore, in the present study, we analyzed chrysanthemum 'Jinba' samples inoculated with F. oxysporum at 0, 3, and 72 h using RNA-seq. RESULTS: The results revealed that 7985 differentially expressed genes (DEGs) were co-expressed at 3 and 72 h after F. oxysporum infection. We analyzed the identified DEGs using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology. The DEGs were primarily enriched in "Plant pathogen interaction", "MAPK signaling pathway", "Starch and sucrose metabolism", and "Biosynthesis of secondary metabolites". Genes related to the synthesis of secondary metabolites were upregulated in chrysanthemum early during the inoculation period. Furthermore, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase enzymes were consistently produced to accumulate large amounts of phenolic compounds to resist F. oxysporum infection. Additionally, genes related to the proline metabolic pathway were upregulated, and proline levels accumulated within 72 h, regulating osmotic balance in chrysanthemum. Notably, the soluble sugar content in chrysanthemum decreased early during the inoculation period; we speculate that this is a self-protective mechanism of chrysanthemums for inhibiting fungal reproduction by reducing the sugar content in vivo. In the meantime, we screened for transcription factors that respond to F. oxysporum at an early stage and analyzed the relationship between WRKY and DEGs in the "Plant-pathogen interaction" pathway. We screened a key WRKY as a research target for subsequent experiments. CONCLUSION: This study revealed the relevant physiological responses and gene expression changes in chrysanthemum in response to F. oxysporum infection, and provided a relevant candidate gene pool for subsequent studies on chrysanthemum Fusarium wilt.


Assuntos
Chrysanthemum , Fusarium , Catecol Oxidase , Açúcares
11.
Sci Total Environ ; 880: 163232, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023817

RESUMO

Forest fire research over the last several decades has improved the understanding of fire emissions and impacts. Nevertheless, the evolution of forest fire plumes remains poorly quantified and understood. Here, a Lagrangian chemical transport model, the Forward Atmospheric Stochastic Transport model coupled with the Master Chemical Mechanism (FAST-MCM), has been developed to simulate the transport and chemical transformations of plumes from a boreal forest fire over several hours since their emission. The model results for NOx (NO and NO2), O3, HONO, HNO3, pNO3 and 70 VOC species are compared with airborne in-situ measurements within plume centers and their surrounding portions during the transport. Comparisons between simulation results and measurements show that the FAST-MCM model can properly reproduce the physical and chemical evolution of forest fire plumes. The results indicate that the model can be an important tool used to aid the understanding of the downwind impacts of forest fire plumes.

12.
Signal Transduct Target Ther ; 8(1): 104, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882399

RESUMO

Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Antígeno CD47/genética , Imunoterapia , Fagocitose/genética , Imunidade Inata/genética , Imunidade Adaptativa , Neoplasias/genética , Neoplasias/terapia
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122446, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764166

RESUMO

Fluorescence spectroscopy has been used for rapid detection of PAHs in soil, but soil organic matter (SOM) produces strong interference to the fluorescence intensity of PAHs, which restricts the application of fluorescence spectroscopy for rapid detection of PAHs in soil. A correction method of reducing the interference of SOM on PAHs fluorescence intensity was proposed combining fluorescence and near-infrared (NIR) spectroscopy. Six soil samples with different concentrations of humic acid (HA) at a given phenanthrene concentration (5 mg/g) were prepared and scanned for obtaining the fluorescence and NIR diffuse reflectance spectra. The spectral data showed that the fluorescence intensity and NIR diffuse reflectance had an approximate trend with the change of HA concentration. It was found that the NIR diffuse reflection at 4672 cm-1 as a calibration factor could effectively reduce the interference of HA on the fluorescence intensity of phenanthrene. Subsequently, a standard curve for the quantitative analysis of phenanthrene in soil was established based on the fluorescence intensity before and after calibration. For the unknown samples, the predicted average relative errors of the standard curves before and after calibration were 27.46 % and 9.00 %, respectively. The results showed that the proposed correction method could reduce the interference of HA on the quantitative analysis of PAHs, and provide a reference for eliminating the interference constraint of fluorescence spectroscopy technique for rapid real-time detection of PAHs in soil.

14.
Cardiovasc Diabetol ; 22(1): 2, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609319

RESUMO

BACKGROUND: Strokes significantly impair quality of life and incur high economic and societal burdens. The triglyceride and glucose (TyG) index is a biochemical marker of insulin resistance (IR) and may have important value in the prediction of strokes, especially ischemic stroke (IS). Our study aims to investigate the relationship between TyG index and IS and ascertain whether TyG index is independently associated with IS adverse outcomes. METHODS: The Cochrane, Embase, Medline, Web of Science, PubMed, and other relevant English databases and related websites were systematically searched for articles on ''TyG index'' and "stroke" published from inception to April 4, 2022. We reviewed the available literature on the TyG index and its relation to predicting IS occurrence in the general population and adverse clinical outcomes. We calculated odds ratios (OR) of TyG index and its predictability of IS occurrence and adverse outcomes. Statistical analyses were performed using the Meta Package in STATA, version 12.0. RESULTS: A total of 18 studies and 592,635 patients were included in our analysis. The pooled effect values of all stroke types showed that higher TyG index was associated with increased the risk of IS in the general population (OR 1.37; 95% CI 1.22-1.54) in a total sample of 554,334 cases with a high level of heterogeneity (P = 0.000, I2 = 74.10%). In addition, compared to IS patients with a lower TyG index, IS patients with a higher TyG index was associated with higher risk of stroke recurrence (OR: 1.50; 95% CI 1.19-1.89) and increased risk of mortality (OR 1.40 95% CI 1.14-1.71). No correlation was found in the effect value combinations of poor functional outcomes (OR 1.12; 95% CI 0.88-1.43) and neurological worsening (OR: 1.76; 95% CI 0.79-3.95) in a total sample of 38,301 cases with a high level of heterogeneity (P = 0.000; I2 = 77.20%). CONCLUSIONS: TyG index has potential value in optimizing risk stratification for IS in the general population. Furthermore, there is a significant association between high TyG index and many adverse outcomes of stroke, especially stroke recurrence and high mortality. Future studies should focus on multi-center and multi-regional designs in order to further explore the relationship between IS and TyG index.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Qualidade de Vida , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Bases de Dados Factuais , Glucose , Triglicerídeos , Glicemia , Biomarcadores , Fatores de Risco
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121987, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265304

RESUMO

A qualitative analysis of melamine-adulterated milk was proposed based on two-trace two-dimensional (2T2D) auto-correlation spectra. The concentration of melamine was used as external perturbation, and 40 adulterated samples of each brand with different concentrations of melamine (0.01 g/L to 1 g/L) were configured. Four brands of milk were used to configure experimental samples, including Guangming brand, Mengniu brand, Sanyuan brand and Wandashan brand. Spectroscopic data of pure milk and melamine-adulterated milk were measured by infrared (IR) (80-4000 cm-1) spectrophotometer. 2T2D auto-correlation spectral technology combined with least squares support vector machine (LS-SVM) method was used for qualitative analysis. The two strongest auto-correlation peaks in the auto-correlation spectra were selected for modeling. For Guangming brand, the intensities of auto-correlation at two wave numbers 2898 cm-1 and 2972 cm-1 were selected as independent variables. For Mengniu brand, the intensities of auto-correlation at two wave numbers 2852 cm-1 and 2920 cm-1 were selected. For Sanyuan brand, the intensities of auto-correlation at two wave numbers 2900 cm-1 and 2974 cm-1 were selected. For Wandashan brand, the intensities of auto-correlation at two wave numbers 2900 cm-1 and 2974 cm-1 were selected. For four brands fused together, the intensities of auto-correlation at two wave numbers 2900 cm-1 and 2974 cm-1 were selected. For each brand, the accuracy of qualitative analysis was 100 %. For four brands fused together, the accuracy of qualitative analysis was 99.05 %. In this way, it greatly reduced the amount of data to be processed. This study showed that 2T2D auto-correlation spectral technology combined with LS-SVM method was perfect for the discrimination of melamine-adulterated milk.


Assuntos
Contaminação de Alimentos , Leite , Animais , Leite/química , Contaminação de Alimentos/análise , Espectroscopia de Luz Próxima ao Infravermelho , Análise dos Mínimos Quadrados , Máquina de Vetores de Suporte
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122066, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36371810

RESUMO

In order to improve the discrimination accuracy of adulterated milk, a detection method was proposed based on temperature-perturbed generalized two-dimensional (2D) correlation characteristic slice spectra. A total of 240 samples were prepared including three brands of 40 pure milk and 40 urea-tainted milk, respectively. The infrared attenuated total reflection spectra of each sample were collected at different temperatures. Synchronous 2D infrared correlation spectrum of each sample was calculated under the external perturbation of temperature. The characteristic slice spectra of each sample were extracted from synchronous 2D correlation spectrum at characteristic peaks of milk and adulterants. N-way partial least squares discriminant analysis (NPLS-DA) models of single brand and the fusion of three brands of adulterated milk were established based on 2D correlation characteristics slice spectra. For comparison, the discrimination models were established using synchronous 2D correlation spectra and one-dimensional (1D) infrared spectra at room temperature, respectively. For the three brand fusion models, the discrimination accuracies of unknown samples were 100%, 98.8% and 82.7% using 2D correlation characteristic slice spectra, 2D correlation spectra, and 1D spectra, respectively. The results showed that the proposed method not only compressed the data, but also effectively extracted the characteristic information, and improved the accuracy of discrimination.


Assuntos
Contaminação de Alimentos , Leite , Animais , Temperatura , Contaminação de Alimentos/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados
18.
Oncol Rep ; 48(5)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129149

RESUMO

AR signalling pathway reactivation plays a key role in the development of castration­resistant prostate cancer (CRPC). High­mobility group protein B1 (HMGB1) is an important factor involved in the occurrence and development of a variety of tumours by regulating gene transcription. In the present study, the association between HMGB1 and prostate cancer (PCa) and the effects of HMGB1 on androgen receptor (AR) transcription and signalling pathway reactivation in PCa cells in vitro and in vivo were evaluated. A bioinformatics method was used to determine the mRNA expression level of HMGB1 in PCa specimens and its correlation with the mRNA expression of AR. Immunohistochemical staining was used to detect the expression of these proteins in clinical PCa samples. Reporter gene and ChIP assays were performed to determine the activity of AR and the effect of HMGB1 on the ability of AR to bind to the promoters of prostate specific antigen and transmembrane protease, serine 2. A bioluminescence resonance energy transfer assay was employed to observe the direct interaction between HMGB1 and AR protein. Additionally, a castrated nude mouse xenograft tumour model was established to verify the effect of HMGB1 on PCa. The results revealed that HMGB1 expression was significantly increased in PCa specimens, which may have a strong correlation with AR expression. Moreover, HMGB1 could reactivate the AR signalling pathway, directly interact with AR, and promote the development of CRPC in an androgen­independent manner. The results of the present study indicated that HMGB1 promoted the development of CRPC by interacting with AR, which inferred that decreasing the expression of HMGB1 may be a potential effective method for CRPC prevention and treatment.


Assuntos
Proteína HMGB1 , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Androgênios , Animais , Proteína HMGB1/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , RNA Mensageiro/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
19.
Environ Pollut ; 309: 119767, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870528

RESUMO

China is the largest CO2 emitting country on Earth. During the COVID-19 pandemic, China implemented strict government control measures on both outdoor activity and industrial production. These control measures, therefore, were expected to significantly reduce anthropogenic CO2 emissions. However, large discrepancies still exist in the estimated anthropogenic CO2 emission reduction rate caused by COVID-19 restrictions, with values ranging from 10% to 40% among different approaches. Here, we selected Nanchang city, located in eastern China, to examine the impact of COVID-19 on CO2 emissions. Continuous atmospheric CO2 and ground-level CO observations from January 1st to April 30th, 2019 to 2021 were used with the WRF-STILT atmospheric transport model and a priori emissions. And a multiplicative scaling factor and Bayesian inversion method were applied to constrain anthropogenic CO2 emissions before, during, and after the COVID-19 pandemic. We found a 37.1-40.2% emission reduction when compared to the COVID-19 pandemic in 2020 with the same period in 2019. Carbon dioxide emissions from the power industry and manufacturing industry decreased by 54.5% and 18.9% during the pandemic period. The power industry accounted for 73.9% of total CO2 reductions during COVID-19. Further, emissions in 2021 were 14.3-14.9% larger than in 2019, indicating that economic activity quickly recovered to pre-pandemic conditions.


Assuntos
COVID-19 , Teorema de Bayes , Dióxido de Carbono/análise , China/epidemiologia , Humanos , Pandemias
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121332, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550992

RESUMO

The discrimination approach of adulterated milk was proposed combined synchronous two-trace two-dimensional (2T2D) correlation slice spectra at the characteristic wavebands of adulterant in milk with multivariate method. Two common adulterants, melamine and urea, were analyzed to demonstrate useful by the method. 2T2D (near infrared) NIR slice spectra at characteristic wavebands of adulterant were extracted from the synchronous 2T2D correlation spectra, and were input to construct the N-way partial least squares discriminant analysis (NPLS-DA) models. One-dimensional (1D) spectroscopy featuring all the present components in the samples combined with partial least squares discriminant analysis (PLS-DA) was also evaluated for comparison. The results indicated that for one kind of adulterant in model, prediction accuracies of slice spectral models were both 100% for melamine-adulterated and urea-adulterated samples discrimination. Moreover, for two kinds of adulterants in model, prediction accuracies of slice spectral models were 90.57% and 100% for melamine-adulterated and urea-adulterated discrimination, respectively, which was better than those of 1D whole models based on PLS-DA (only 81.13% and 98.15%, respectively). The comparison informs that the 2T2D slice spectra extracted at the characteristic wavebands of adulterant highlighted the adulterant spectral features and was obviously advantage to improve the discrimination accuracy. Meanwhile, the complexity of slice spectra is significantly reduced compared with the whole matrix of synchronous 2T2D correlation spectra.


Assuntos
Contaminação de Alimentos , Leite , Animais , Análise Discriminante , Contaminação de Alimentos/análise , Análise dos Mínimos Quadrados , Leite/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...